前言
本文主要介绍了 Hadoop 的三种运行模式以及配置的方式。
运行模式
Hadoop 的运行模式分为三种:
-
Standalone(本地模式/单机模式/local模式)
该模式下没有任何守护进程,用户程序和 Hadoop 程序运行在同一个 Java 进程,使用的文件系统是本地文件系统而不是分布式文件系统,此模式下一般用于本地调试。
-
Pseudo-Distributed(伪集群模式)
在单机上模拟集群模式,各守护进程运行在单独的 Java 进程当中,使用的文件系统是 HDFS
-
Fully-Distributed(集群模式)
守护进程运行在集群上,使用的文件系统也是 HDFS
配置过程
本次配置基于 Hadoop2.9.2,其中 Standalone 在 CentOS 7.2 系统下进行配置, Pseudo-Distributed 模式在 MacOS 10.14.4 上进行配置,Fully-Distributed 模式在腾讯云主机上进行配置,集群由两台云主机组成,分别运行 Ubuntu 14.04.1 和 CentOS 7.2 系统。
环境准备
-
Java 7/8
Hadoop 2.7.x to 2.x 支持 Java 7/8,其它 Hadoop 版本支持的 Java 版本请点击 进行查询
下载:
sudo yum install java-1.8.0-openjdk-devel //centos 安装 Java8,ubuntu 下需要用 apt-get 进行安装复制代码
配置环境变量:
cd ~vi .bash_profileexport JAVA_HOME=/usr/lib/jvm/jre-1.8.0-openjdk.i386source .bash_profile复制代码
-
ssh 和 rsync: 用
ssh
和rsync
命令测试后发现 Centos 本身就有,所以无须进行安装。 -
Hadoop
sudo wget http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.9.2/hadoop-2.9.2.tar.gztar -zxvf hadoop-2.9.2.tar.gz复制代码
这里的下载地址最好根据云主机所在的区域进行选择,如果是国内的云主机最好使用国内的镜像地址,这样下载会快很多。
Standalone 模式
下载解压之后的 Hadoop 默认就是 Standalone 模式,可直接运行 wordcount 进行测试
mkdir input //hadoop 的同级目录创建cp hadoop-2.9.2/LICENSE.txt input/hadoop-2.9.2/bin/hadoop jar hadoop-2.9.2/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.2.jar wordcount input output //运行 wordcountcat output/part-r-00000 //查看结果复制代码
同时再开一个终端在作业运行的时候输入 jps 查看进程
可以看到 Standalone 模式下 Hadoop 只会启动 RunJar 进程来运行整个作业
Pseudo-Distributed 模式
-
修改 etc/hadoop/core-site.xml
fs.defaultFS hdfs://localhost:9000 hadoop.tmp.dir /home/hadoop/tmp -
修改 etc/hadoop/hdfs-site.xml
dfs.replication 1 dfs.permissions false -
配置免密登录
ssh localhost 测试能否免密登录(如果能够则跳过以下操作)ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsacat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keyschmod 0600 ~/.ssh/authorized_keys复制代码
-
修改 etc/hadoop/hadoop-env.sh(如果提示找不到 JAVA_HOME)
export JAVA_HOME=/usr/lib/jvm/jre-1.8.0-openjdk.i386 //上面配置的 JAVA_HOME 好像没起作用复制代码
-
格式化 HDFS
bin/hdfs namenode -format复制代码
-
启动 HDFS
sbin/start-dfs.sh复制代码
启动后输入 jps 看到以下进程即成功,这个时候可以通过 访问 NameNode
-
运行 wordcount
bin/hdfs dfs -mkdir /userbin/hdfs dfs -mkdir /user/
bin/hdfs dfs -mkdir /user/ /inputbin/hdfs dfs -put LICENSE.txt /user/ /input //创建文件夹并上传文件bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.2.jar wordcount input output //运行 wordcountbin/hdfs dfs -cat output/part-r-00000 //显示结果复制代码 在另一终端输入 jps 可以看到运行时的以下进程
依旧是用 RunJar 提交,只是读取和写入采用了 HDFS。
-
通过 YARN 执行 Job(可选配置,不过为了更接近真实集群还是建议配置)
-
修改 etc/hadoop/mapred-site.xml
cp etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xmlvi etc/hadoop/mapred-site.xml复制代码
增加以下内容
mapreduce.framework.name yarn -
修改 etc/hadoop/yarn-site.xml
yarn.resourcemanager.hostname localhost yarn.nodemanager.aux-services mapreduce_shuffle -
启动 YARN
sbin/start-yarn.sh复制代码
启动成功后可以通过 访问 ResourceManager 节点,并且输入 jps 会显示以下进程
其中 ResourceManager 和 NodeManager 是属于 YARN 的进程。
-
重复
7
的操作,输入 jps 查询进程可以看到新增加了 YarnChild 进程和 MRAppMaster 进程,之所以有两个 YarnChild 进程是因为输入文件夹中存在两个文本文件,这说明了 MapReduce 是通过创建多个进程并行计算的。
-
Fully-Distributed 模式
集群包括两个节点,节点名分别为 master 和 slave,master 和 slave 的节点配置过程基本一致,以下是配置过程(两个节点差异配置会进行注明,建议先配置好 master 节点的 Hadoop,然后用 scp 命令复制到 slave 节点进行修改。):
-
修改 /etc/hosts
152.136.76.12 master //腾讯云公网ip94.191.43.137 slave复制代码
-
免密登录(⚠️两个节点的登录名必须一致,这里都为 root)
master 节点配置本机免密登录以及移动公钥到子节点ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsacat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keyschmod 0600 ~/.ssh/authorized_keysscp ~/.ssh/id_rsa.pub root@slave:~/slave 节点配置 master 节点免密登录cat ~/id_rsa.pub >> ~/.ssh/authorized_keyschmod 600 ~/.ssh/authorized_keys复制代码
-
修改 etc/hadoop/core-site.xml
fs.defaultFS hdfs://localhost:9000 hadoop.tmp.dir /home/hadoop/tmp -
修改 etc/hadoop/hdfs-site.xml
dfs.replication 1 dfs.permissions false dfs.namenode.secondary.http-address slave:50090 -
修改 etc/hadoop/mapred-site.xml
mapreduce.framework.name yarn -
修改 etc/hadoop/yarn-site.xml
yarn.resourcemanager.hostname master yarn.nodemanager.aux-services mapreduce_shuffle -
修改 etc/hadoop/hadoop-env.sh
export JAVA_HOME=/usr/lib/jvm/jre-1.8.0-openjdk.i386 //master 和 slave 填入各自路径export HADOOP_LOG_DIR=/root/hadoop/hadoop-2.9.2/logs //可以自己选定复制代码
-
修改 etc/hadoop/mapred-env.sh
export JAVA_HOME=/usr/lib/jvm/jre-1.8.0-openjdk.i386复制代码
-
修改 etc/hadoop/yarn-env.sh
export JAVA_HOME=/usr/lib/jvm/jre-1.8.0-openjdk.i386 export YARN_LOG_DIR=/root/hadoop/hadoop-2.9.2/logs复制代码
-
修改 etc/hadoop/slaves
masterslave复制代码
-
启动 HDFS 和 YARN
bin/hdfs namenode -format //首次运行时格式化sbin/start-dfs.shsbin/start-yarn.sh复制代码
在 master 和 slave 节点分别输入 jps 后有
此时可以通过 http://152.136.76.12:8080 (ip 为 master 的公网 ip) 以及 http://152.136.76.12:50070 分别访问 HDFS 的 web 界面和 YARN 的 web 界面,可以看到 HDFS 下有一个 slave 节点,YARN 下有两个节点 -
运行 wordcount(与伪分布式中一致)
bin/hdfs dfs -mkdir /userbin/hdfs dfs -mkdir /user/
bin/hdfs dfs -mkdir /user/ /inputbin/hdfs dfs -put LICENSE.txt /user/ /input bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.2.jar wordcount input outputbin/hdfs dfs -cat output/part-r-00000复制代码 继续用 jps 查看两台主机的进程
可以看到集群模式中的进程与伪集群模式中的进程没有区别,唯一的区别在于进程在不同的主机上运行。
错误
这里主要记录配置过程中遇到的一部分错误
-
Container exited with a non-zero exit code 1. Error file: prelaunch.err.
该错误是在腾讯云主机上配置的伪集群模式运行 wordcount 时出现的,尝试了网上的一些办法都没有解决。最后采用自己电脑配置再运行一遍成功,可能是因为云主机的配置问题。
-
在 YARN 上运行 Java.net.ConnectException: Connection refused
可能是防火墙的原因,根据 中的提示解决
-
无法外网访问VM中的 Hadoop YARN 的8088端口
无法通过云主机 ip:8088 访问 YARN 的 Web 页面时,不妨通过
netstat -nlp | grep java
查看当前提供 web 服务的端口,如果 ip 是 127.0.0.1 证明存在问题,需要修改 hosts,具体过程见 。 -
slave: bash: line 0: cd: /root/hadoop/hadoop-2.9.2: No such file or directory
配置集群模式时出现,主要原因是手动配置 slave 时 Hadoop 存放路径与 master 不一致,只需要将 slave 的 Hadoop 放在与 master 的同一路径下即可解决。